INVESTIGATION OF TIIE STABILITY OF THE SOLUTIONS OF A LINEAR DIFFERENTIAL EQUATION WITH PERIODIC COEFFICIENTS AND WITH STATIONARY DELAYS in tile angument by the methon of hill

(ISSLEDOVANIIE USTOICHIVOSTI RESHENII LINEINOGO DIFFERENTSIAL' NOGO URAVNENIIA S PERIODICHESKIMI KOEFFITSIENTAMI I STATSIONARNYMI ZAPAZDYVANIIAMI ARGUMENTA METODOM KHILLA)

PMM Vol.26, No.4, 1962, pp. 755-761

K.G. VALEEV
(Leningrad)
(Received March 12, 1962)

In this article it is shown that Hill's method [1] can be applied to the investigation of the solutions of a linear differential equation with periodic coefficients and with stationary lags in the argument. The presentation is made with the aid of a second order differential equation with concentrated lags. The presented method can be extended quite easily to systems of m equations of the nth order with concentrated and uniformly distributed stationary lags in the argument.

1. The following equation is considered

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+\sum_{k=0}^{s} \sum_{q=-l}^{l} a_{k q} e^{-i q t} y\left(t-\tau_{k}\right)=0 \tag{1.1}
\end{equation*}
$$

Here the $a_{k q}$ are complex numbers, the τ_{k} are real numbers such that

$$
0=\tau_{0}<\tau_{1}<\ldots \tau_{s} \leqslant h,
$$

and l is a positive number. The problem is to find, for positive t, a solution $y(t)$ that satisfies the initial conditions

$$
\begin{equation*}
y(t)=\varphi(t) \quad(h \leqslant t<0), \quad y(0)=y_{0}^{(0)}, \quad \frac{d y}{d t}(0)=y_{0}^{(1)} \tag{1.2}
\end{equation*}
$$

The function $\varphi(t)$ is absolutely integrable over $h \leqslant t<0$.
Let $f(p)$ be the Laplace transform [2] of the desired solution of Equation (1.1) satisfying the initial conditions (1.2).

Multiplying (1.1) by $e^{-p t}$ and integrating with respect to t between the limits 0 and $+\infty$, we obtain the difference equation for the determination of $f(p)$:

$$
\begin{equation*}
p^{2} f(p)+\sum_{q=-l}^{l} b_{q}(p+q i) f(p+q i)=\psi(p) \tag{1.3}
\end{equation*}
$$

Here

$$
\begin{gather*}
b_{Q}(p)=\sum_{k=0}^{s} a_{k q} e^{-\tau} k^{p}, \quad \psi(p)=p y_{0}^{(0)}+y_{0}^{(1)}-\sum_{q=-l}^{l} \psi_{q}(p+q i) \tag{1.4}\\
\Psi_{\mathbb{Q}}(p)=\sum_{k=1}^{Q_{k q}} a_{-\tau_{k}}^{0} \psi(\tau) e^{-p\left(\tau+\tau_{k}\right)} d \tau \tag{1.5}
\end{gather*}
$$

The functions $b_{q}(p)$ in (1.4) are bounded in the half-plane Re $p \geqslant c=$ const. Replacing p in (1.3) by ($p+k i$) and dividing the obtained difference equation by $-k^{2}(k= \pm 1, \pm 2, \pm 3, \ldots)$, we obtain an infinite system of linear algebraic equations in the unknowns $f(p+k i)$:

$$
\begin{gather*}
-k^{-2} f(p+k i)-\sum_{q=-l}^{n} k^{-2} b_{q}(p+(k+q) i) f(p+(k+q) i)=-k^{-2} \psi(p+k i) \tag{1.6}\\
(k= \pm 1, \pm 2, \pm 3, \therefore)
\end{gather*}
$$

The complex variable p in (1.6) and (1.3) will be treated as a parameter. Solving the system of Equations (1.3) and (1.6) by means of Cramer's formula, we obtain
\square

Here, $\Delta(p)$ denotes the infinite determinant of the system (1.3), (1.6).

$$
\Delta(p)=\left|\begin{array}{lllll}
\left.:-i(p+i)^{2}+b_{0}(p+i)\right] & -b_{-1}(p) & -b_{-2}(p-i) \tag{1.8}\\
: & b_{1}(p+i) & p^{2}+b_{0}(p) & b_{-1}(p-i) \\
: \ldots & -b_{2}(p+i) & \ldots & -\left[(p-i)^{2}+b_{0}(p-i)\right]
\end{array}\right|
$$

One can show that the determinant $\Delta(p)$ in (1.8) converges absolutely and uniformly [3] in every bounded region Σ of the complex plane p. The product of the diagonal elements $A(p)$ of the determinant $\Delta(p)$ can be represented in the form

$$
\begin{equation*}
A(p)=\left[p^{2}+b_{0}(p)\right] \prod_{k=1}^{\infty}\left(1-\frac{2 i p}{k}-\frac{p^{2}+b_{0}(p+k i)}{k^{2}}\right)\left(1+\frac{2 i p}{k}-\frac{p^{2}+b_{0}(p-k i)}{k^{2}}\right) \tag{1.9}
\end{equation*}
$$

The sum of all the nondiagonal elements of the determinant $\Delta(p)$ in (1.8) is dominated by the convergent series

$$
\begin{equation*}
\left|\sum_{k=-\infty}^{\infty} \sum_{\substack{q=-1 \\ q \neq 0}}^{l}-k^{-2} b_{q}(p+(k+q) i)\right| \leqslant 2 \sum_{k=1}^{\infty} k^{-2} \sum_{q=-l}^{l}\left|a_{k q}\right| \max _{p \in \Sigma}\left|e^{-\tau} k^{p}\right| \tag{1.10}
\end{equation*}
$$

Formulas (1.9) and (1.10) imply the absolute convergence of the determinant $\Delta(p)$ of (1.8) if $p \in \Sigma$. If in (1.7) and (1.8) we take a determinant of finite order, then we obtain an approximate solution $f(p)$. Its original function will be taken as an approximate solution of Equation (1.1) with the conditions (1.2).

- 2. Let us consider the analytic properties of the determinant $\Delta(p)$ in (1.8). From what has been said it follows that $\Delta(p)$ is an entire function of p, and also of the parameters $a_{k} q^{\prime} T_{k}(1.1)$. The center element $c(p)$ of the determinant $\Delta(p)$

$$
\begin{equation*}
c(p)=p^{2}+\sum_{k=0}^{s} a_{k 0} e^{-\tau_{k} p} \tag{2.1}
\end{equation*}
$$

is an entire function of p. This function has no zeros when Re $p \geqslant \alpha$, if α is sufficiently large. The product of the equation of the diagonal elements $A(p)$ in (1.9) is a periodic function of p of period i because

$$
\begin{gather*}
A(p+i)=c(p+i) \lim _{r \rightarrow \infty} \prod_{\substack{k=-r \\
k \neq 0}}^{s}\left[-k^{-2} c(p+(k+1) i]=c(p) \lim _{r \rightarrow \infty} \prod_{k=-r}^{r}\left[-k^{-2} c(p+\right.\right. \\
+k i)\left[\lim \frac{c(p+(r+1) i)}{c(p-r i)}=A(p)\right. \tag{2.2}
\end{gather*}
$$

We shall make use of the notation

$$
\begin{equation*}
c_{q}(p)=b_{q}(p+q i)\left[p^{2}+b_{0}(p)\right]^{-1} \tag{2.3}
\end{equation*}
$$

If we move the diagonal element of each row of the determinant (1.8) behind the symbol for the determinant, we obtain

$$
\begin{equation*}
\Delta(p)=D(p) A(p) \tag{2.4}
\end{equation*}
$$

where $D(p)$ is a new convergent determinant

It is obvious that the determinant $D(p)$ is periodic of period i.
Hence, we have proved the following theorem.
Theorem 2.1. Hill's determinant $\Delta(p)$ in (1.8), constructed for the differential equation (1.1) with periodic coefficients and stationary lag of the argument, is an entire periodic function of p with period i.

From (2.5), (2.3) and (1.4) it follows that $D(p) \rightarrow 1$ when $\operatorname{Re} p \rightarrow+\infty$. Since $b_{0}(p) \rightarrow a_{00}$ in (1.4) when $\operatorname{Re} p \rightarrow+\infty$, we obtain, by retaining the term with largest absolate value, the asymptotic expression for $A(p)$ of (1.9) when $\operatorname{Re} p \rightarrow+\infty$,

$$
\begin{equation*}
A(p) \sim\left(p^{2}+a_{00}\right) \prod_{k=-\infty}^{\infty}\left[-k^{-2}\left((p+k i)^{2}+a_{00}\right)\right]=\frac{1}{2 \pi^{2}}\left(\operatorname{cosb} 2 \pi p-\cosh 2 \pi \sqrt{-a_{00}}\right) \sim \frac{e^{2 \pi p}}{4 \pi^{2}} \tag{2.8}
\end{equation*}
$$

In the particnlar case when the lags T_{k} in (1.1) are multiples of 2π, the function $b_{0}(p)$ in (1.4) will be periodio with period i, and we obtain, when $\operatorname{Re} p \rightarrow+\alpha$, the equation

$$
\begin{equation*}
A(p)=\frac{1}{2 \pi^{2}}\left[\cosh 2 \pi p-\cosh 2 \pi\left(-\sum_{k=0}^{s} a_{k 0} \exp \left\{-\tau_{k} p\right\}\right)^{\frac{1}{2}}\right]=\frac{e^{2 \pi p}}{4 \pi^{2}}+O(1) \tag{2.7}
\end{equation*}
$$

Let us make the following substitution in (1.8)

$$
\begin{equation*}
\rho=\exp \{-2 \pi p\} \tag{2.8}
\end{equation*}
$$

Because of the periodicity of the determinant $\Delta(p)$, the function

$$
\begin{equation*}
\Phi(\rho)=\rho \Delta\left(-\frac{1}{2 \pi} \ln \rho\right) 4 \pi^{2}=1+O(\rho), \quad \rho \rightarrow 0 \tag{2.9}
\end{equation*}
$$

is a single-valued function without finite poles, namely, it is an entire function of ρ. By Weierstrass' theorem $[2, ~ p .407]$ we have

$$
\begin{equation*}
\Phi(\rho)=\exp (g(\rho)) \prod_{n=1}^{\infty}\left(1-\frac{\rho}{\rho_{n}}\right) \exp \left\{\frac{\rho}{\rho_{n}}+\frac{1}{2} \frac{\rho^{2}}{\rho_{n}{ }^{2}}+\ldots+\frac{1}{k_{n}}\left(\frac{\rho}{\rho_{n}}\right)^{k_{n}}\right\} \tag{2.10}
\end{equation*}
$$

Here $g(\rho)$ is an entire function of $\rho, g(0)=0$, the ρ_{n} are the zeros of $\Phi(\rho)$ when $n \cdot \infty$, and the k_{n} are certain integers which will guarantee the convergence of (2.10). Making use of the notation $p_{j}=-0.5 \pi^{-1} \ln P_{j}$. we obtain from (2.10) and (2.9) the general form of the analytic representation of ((P) in (1.8):

$$
\Delta(p)=0,25 \pi^{-2} \exp \{2 \pi p\} \exp [g(\exp \{-2 \pi p)]\} \times
$$

$$
\begin{equation*}
\left.\left.\times \prod_{n=}^{\infty} 1-\exp \left\{2 \pi\left(p_{j}-p\right)\right\}\right) \exp \left\{2 \pi\left(p_{j}-p\right)\right\}+\ldots+\frac{1}{k_{n}} \exp \left\{2 \pi k_{n}\left(p_{j}-p\right)\right\}\right\} \tag{2.11}
\end{equation*}
$$

$g(\rho)=g_{1} \rho+g_{2 p^{2}}+g_{3} p^{3}+\ldots+, \lim _{n \rightarrow \infty} \sqrt[n]{\left|g_{n}\right|}=0, \quad$ Re $p_{n} \rightarrow-\infty$ when $n \rightarrow \infty$
The determination of the behavior of the numbers p_{n} and g_{n} when $n \rightarrow \infty$ is still an unsolved problem.
3. The problem of the stability of the solutions of Equation (1.1) involves the evaluation of the characteristic exponents p_{n} of the solution of Equation (1.1). From theorem 2.1 it follows that the transform $f(p)$ (1.7) of the solution $y(t)$ is a meromorphic function of p with poles at the points

$$
\begin{equation*}
p_{n k}=p_{n}+k i \quad(n=1,2, \ldots, k=0, \pm 1, \pm 2, \ldots) \tag{3.1}
\end{equation*}
$$

If we seek the original function $y(t)$ with the aid of the expansion given on p. 483 of [2], we obtain the next theorem.

Theorem 3.1. The solution $y(c)$ of Equation (1.1) with the initial conditions (1.2) can always be expanded into a series of the type

$$
\begin{equation*}
y(t)=\sum_{n=1}^{\infty} y_{n}(t), \quad y_{n}(t)=\sum_{k=-\infty}^{\infty}\left(\beta_{n k}^{(0)}+\beta_{n k}^{(1)} t+\ldots+\beta_{n k}^{\left(r_{n}\right)} t^{r_{n}} e^{\left(p_{n}+k i\right) t}\right. \tag{3,2}
\end{equation*}
$$

where $r_{n}+1$ is the multiplicity of the zero p_{n} of the deterinant $\Delta(p)$ (1.8) .

If we substicute $y_{n}(t)$ from (3.2) into (1.1) we find that $i_{n}(t)$ is indeed a solution of Equation (1.1).

The ruations for $\hat{\beta}_{n k}{ }^{(r)}$ will be satisfied because Equation: (1.3) and (1.5) are satisfied by $f(p)$ which has poles of order $r_{n}+1$ at the peints $P_{n k}(3.1)$.

Hence, $y_{n}(t)$ is an entire function of t, and the series for $y_{n}(t)$ (3.2) converges absolutely and uniformly for all finite values of t. This implies the asymptotic nature of the series (3.2). Thus we obtain the next theorem.

Theorem 3.2. The solution $y(t)$ of Equation (1.1) with the conditions (1.2) can always be expanded into an asymptotic series, with $t \rightarrow \infty$. of the form

$$
\begin{equation*}
y(t)=\sum_{n=1}^{\infty} e^{r_{n} t}\left(\alpha_{n}^{(0)}(l)+a_{n}^{(1)}(t) t+\ldots+\alpha_{n}^{\left(r_{n}\right)}(t) i^{\tau} n\right) \tag{3.3}
\end{equation*}
$$

Here $\alpha_{n}{ }^{(r)}(t+2 \pi) \equiv \alpha_{n}{ }^{(r)}(t)$, Re $p_{n} \rightarrow-\infty$ when $n \rightarrow+\infty$, ind $r_{n}+1$ stands for the multiplicity of the zero p_{n} of the determinant $\Delta(p)$ (1.8).

We may assume, without loss of generality, that $\operatorname{Re} p_{1} \geqslant \operatorname{Re} p_{2} \geqslant \operatorname{Re} p_{3} \geqslant$ $\ldots \quad$ Then we have the following result if Re $p^{*}<\operatorname{Re} p_{k+1}$:

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left|y(t)-\sum_{n=1}^{k} y_{n}(t)\right| \exp \left\{p^{*} t\right\}=0 \tag{3.4}
\end{equation*}
$$

Theorem 3.2 permits us to draw certain conclusions about the stability of the solutions of Equation (1.1) if we know the zeros p_{n} of the determinant Δp. This theorem can be extended to systems of linear differential equations with periodic coefficients and with stationary lags of the argument, see for example [3]. In order to find the characteristic exponents p_{n}, one can make use of the conditions for the existence of the solution $y(t)$ of Equation (1.1) in the form

$$
\begin{equation*}
y(t)=e^{p t} \sum_{k=-\infty}^{\infty} \beta_{k} e^{i k t} \tag{3.5}
\end{equation*}
$$

4. We shall consider the Mathieu equation

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+\lambda y(t)+2 \mu y(t-\tau) \cos 2 t=0 \tag{4.1}
\end{equation*}
$$

Here $\lambda, \mu \geqslant 0$, and $\tau \geqslant 0$ are real parameters. Equation (1.3) takes on the form

$$
\begin{equation*}
\left(p^{2}+\lambda\right) f(p)+\mu e^{-(p+2 i) \tau} f(p+2 i)+\mu e^{-(p-2 i) \tau} f(p-2 i)=\psi(p) \tag{4.2}
\end{equation*}
$$

The solution of a difference equation of the type (4.2) is given in [4, p.983].

From the determinant $\Delta(p)$ one can obtain the equation [4]

$$
\begin{equation*}
f_{0}(p)-s(p)-h(p)=0 \tag{4.3}
\end{equation*}
$$

where the notation of $[4, p .984]$ is used:

$$
\begin{gather*}
f_{0}(p)=p^{2}+\lambda, \quad f_{1}(p)=f_{-1}(p)=\mu e^{-p \tau}, \quad \omega=2 i \tag{4.4}\\
s(p)=\frac{f_{1}(p+\omega) f_{-1}(p)}{f_{0}(p+\omega)-\frac{f_{1}(p+2 \omega) f_{-1}(p+\omega)}{f_{0}(p+2(1)-\ldots}}, \quad h(p)=\frac{f_{-1}(p-\omega) f_{1}(p)}{f_{0}(p+\omega)-\frac{f_{-1}(p-2 \omega) f_{1}(p-\omega)}{f_{0}(p-2 \omega)-\ldots}}
\end{gather*}
$$

For Equation (4.1) with $\lambda \neq k^{2}(k=0,1,2, \ldots)$ Equation (4.3) takes on the form

$$
\begin{equation*}
p^{2}+\lambda-\frac{\mu^{2} e^{-2 \tau(p+i)}}{(p+2 i)^{2}+\lambda}-\frac{\mu^{2} e^{-2 \tau(p-i)}}{(p-2 i)^{2}+\lambda}+O\left(\mu^{4}\right)=0 \tag{4.6}
\end{equation*}
$$

From Equation (4.6) we find the characteristic exponent p, which is near $i \sqrt{ } \lambda$ for small values of μ

$$
\begin{align*}
p= & i \sqrt{\lambda}+i \frac{\mu^{2}}{4 \sqrt{\bar{\lambda}}(1-\lambda)}(\cos 2 \tau \sqrt{\lambda} \cos 2 \tau+\sqrt{\lambda} \sin 2 \tau \sin 2 \tau \sqrt{\lambda})+ \\
& +\frac{\mu^{2}}{4 \sqrt{\lambda}(1-\lambda)}(\sin 2 \tau \sqrt{\bar{\lambda}} \cos 2 \tau-\sqrt{\bar{\lambda}} \cos 2 \tau \sqrt{\lambda} \sin 2 \tau)+O\left(\mu^{4}\right) \tag{4.7}
\end{align*}
$$

If the lag $\tau>0$ is sufficiently small, then

$$
\begin{equation*}
\operatorname{Re} p=-\frac{2}{3} \mu^{2} \tau^{3}+O\left(\left|\mu^{2} \tau^{5}\right|+\left|\mu^{4}\right|\right) \tag{4.8}
\end{equation*}
$$

The solutions (4.1) will be asymptotically stable for small enough values $\mu>0, \tau>0$, and $\lambda \neq k^{2}(k=0,1,2, \ldots)$. Suppose that $\lambda=0.25$. Then (4.7) yields

$$
\begin{equation*}
\operatorname{Re} p=-\frac{2}{3} \mu^{2} \sin ^{3} \tau+O\left(\mu^{4}\right) \tag{4.9}
\end{equation*}
$$

For large values of the lag $T>0$, $(2 n+1) \pi<T<(2 n+2) \pi(n=0$, $1,2, \ldots$, and for sufficiently small values of $\mu>0$, the solutions of Equation (4.1) are unstable.
5. For the investigation of the resonance $\lambda=k^{2}(k=0,1,2, \ldots)$ in Equation (4.1), we shall make use of the following lemma.

Lemma 5.1. Let $\varphi(p, \mu)$ be a holomorphic function of μ and p when $|\mu|<\varepsilon$ and $|p|<\varepsilon$. Let us consider the equation

$$
\begin{gather*}
\Phi(p, \mu) \equiv a_{0}(\mu)+a_{1}(\mu) p+a_{2}(\mu) p^{2}+a_{3}(\mu) p^{3}+\ldots=0 \tag{5.1}\\
O\left(a_{0}\right)=O\left(\mu^{2}\right), \quad O\left(a_{1}\right)=(\mu), \quad O\left(a_{n}\right)=O(1) \quad(n=2,3, \ldots), \quad a_{2}(\mu)>0
\end{gather*}
$$

If it is known that two of the smallest (in absolute value) roots p_{1}, p_{2} of Equation (5.1) are conjugates of each other, then a necessary and sufficient condition for the negativeness of the Re p_{1} and Re p_{2} is given by

$$
\begin{gather*}
\varphi(0, \mu)=a_{0}(\mu)>0 \tag{5.2}\\
a_{1}-\frac{a_{0} a_{2} a_{3} i}{a_{2}^{2}-a_{1} a_{3}}+\frac{a_{0} a_{9} a_{4}\left(a_{1} a_{2}-a_{0} a_{8}\right)}{\left(a_{2}^{2}-a_{1} a_{3}\right)^{2}}+O\left(\mu^{4}\right)>0 \tag{5.3}
\end{gather*}
$$

The proof of this lema can be obtained from Neierstrass's theorem [5, p. 9] by dividing $\varphi(p, \mu)$ of (5.1) by a factor, a quadratic function of p, and with the use of Hurwitz' s condition $[2, ~ p .427]$.

Example 5.1. We shall determine the conditions for the stability of the solutions of Equation (4.1) when $\mu \approx 0, \lambda=0$. Applying the Lemma 5.1 to Equation (4.6) and taking into account the terms of order less than $0\left(\mu^{6}+\mu^{4}|\lambda|+\lambda^{2} \mu^{2}\right)$, we obtain the conditions for stability when
$|\mu|$ and $|\lambda|$ are small:

$$
\begin{equation*}
\lambda+0.5 \mu^{8} \cos 2 \tau+0.125 \mu^{2} \lambda \cos 2 \tau+\frac{\mu^{4}}{128} \cos 8 \tau>0 \tag{5.4}
\end{equation*}
$$

$$
\mu^{2}\left[\left(-\tau-\tau \lambda+\frac{2}{3} \tau^{3} \lambda\right) \cos 2 \tau+\left(\frac{1}{2}+\frac{\lambda}{2}-\lambda \tau^{2}\right) \sin 2 \tau\right]+\mu^{4}\left[\left(-\frac{\tau}{4}-\frac{\tau^{3}}{3}\right)+\right.
$$

$$
\begin{equation*}
\left.+\left(\frac{\tau}{4}-\frac{\tau^{8}}{3}\right) \cos 4 \tau+\left(-\frac{1}{32}+\frac{\tau^{2}}{2}\right) \sin 4 \tau-\frac{\tau}{32} \cos 8 \tau+\frac{5}{256} \sin 8 \tau\right]>0 \tag{5.5}
\end{equation*}
$$

When $\tau=0$, the condition (5.4) reduces to Mathieu's criterion for stability. The Condition (5.5) is the second nonobvious criterion for stability. When $T>0$ is small, the latter criterion takes on the form

$$
\begin{equation*}
\frac{4}{3} \mu^{2} \tau^{3}+O\left(\left|\mu^{2} \tau^{5}\right|+\left|\mu^{2} \lambda\right|+\left|\mu^{4}\right|\right)>0 \tag{5.6}
\end{equation*}
$$

Example.5.2. We shall find the conditions for stability of the solutions of Equation (4.1) when $|\lambda-1|$, and $|\mu|$ are small.

Let us rewrite the condition (4.3) in a more convenient form (2i= $=\omega$)

$$
\begin{equation*}
\left[f_{0}(p)-s(p)\right]\left[f_{0}(p-2 i)-h(p-2 i)\right]=f_{-1}(p-2 i) f_{1}(p) \tag{5.7}
\end{equation*}
$$

After the substitution of (4.4) into Equation (5.7), the latter takes the form

$$
\begin{gather*}
{\left[p^{2}+\lambda-\frac{\mu^{2} e^{-2 \tau(p+i)}}{(p+2 i)^{2}+\lambda}-\frac{\mu^{4} e^{-4 \tau(p+2 i)}}{\left[(p+2 i)^{2}+\lambda\right]^{2}\left[(p+4 i)^{2}+\lambda\right]}+O\left(\mu^{6}\right)\right]\left[(p-2 i)^{2}+\lambda-\right.} \\
\left.-\frac{\mu^{2 e-2 \tau(p-9 i)}}{(p-4 i)^{2}+\lambda}-\frac{\mu^{4} e^{-4 \tau(p+4 i)}}{\left[(p-4 i)^{2}+\lambda\right]^{2}\left[(p-6 i)^{2}+\lambda\right]}+O\left(\mu^{6}\right)\right]=\mu^{2} e^{-2 \tau(p-i)} \tag{5.8}
\end{gather*}
$$

Let us set $p=i+z$ in (5.8). Expanding (5.8) in powers of 2 , and making use of Lemma 5.1, we obtain the inequalities

$$
\begin{gather*}
\left(\lambda-1+\frac{\mu^{2} \cos 4 \tau}{9-\lambda}+\frac{\mu^{4} \cos 12 \tau}{1536}\right)^{2}+\frac{\mu^{4} \sin ^{2} 4 \tau}{64}>\mu^{2}+O\left(\mu^{6}+\mu^{4}|\lambda-1|\right) \tag{5.9}\\
\frac{4}{3} \mu^{2} \tau^{9}+O\left(\mu^{2}(\lambda-1)^{2}+\mu^{2} \tau^{5}+\mu^{4}\right)>0 \tag{5.10}
\end{gather*}
$$

Example 5.3. Let us investigate the stability of the Mathieu equation with lag and friction

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+\mu c \frac{d y(t)}{d t}+\lambda y(t)+2 \mu \cos 2 t y(t-\tau)=0, \quad c>0 \tag{5.11}
\end{equation*}
$$

when $|\lambda-1|,|\mu|$ are sufficiently small. For the purpose of finding the characteristic exponents it is advisable to use (5.7), where one has to set

$$
\begin{equation*}
f_{0}(p)=p^{2}+\mu c p+\lambda, \quad f_{1}(p)=f_{-1}(p)=\mu e^{-p r}, \quad \omega=2 i \tag{5.12}
\end{equation*}
$$

Equation (5.7) now takes the form

$$
\begin{gather*}
{\left[p^{2}+\mu c p+\lambda-\frac{\lambda^{2} e^{-2 \tau(p+i)}}{(p+2 i)^{2}+\mu c(p+2 i)+\lambda}+O\left(\mu^{4}\right)\right]\left[(p-2 i)^{2}+\mu c(p-2 i)+\lambda-\right.} \\
\left.-\frac{\mu^{2} e^{-2 \tau(p-3 i)}}{(p+4 i)^{2}+\mu c(p+4 i)+\lambda}+O\left(\mu^{4}\right)\right]=\mu^{2} e^{-2 \tau(p-i)} \tag{5.13}
\end{gather*}
$$

Expanding Equation (5.13) in powers of $z=p-i$, and applying Lemma 5.1, we obtain the following conditions for stability:

$$
\begin{gather*}
\left(\lambda-1+\frac{\mu^{2} \cos 4 \tau}{8}\right)^{2}+\mu^{2}\left(c-\frac{\mu}{8} \sin 4 \tau\right)^{2}>\mu^{2}+O\left(\mu^{4}+\mu^{3}|\lambda-1|\right) \tag{5.14}\\
\mu c+\frac{4}{3} \mu^{2} \tau^{3}+O\left(\mu^{3}+\mu^{2} \tau^{5}+\mu^{2}(\lambda-1)^{2}>0\right. \tag{5.15}
\end{gather*}
$$

6. In the determination of the characteristic exponents it is convenient to transform the infinite determinant of Hill (1.8), (2.5) into a determinant of finite order, as is done in [6]. Let us consider the differential equation

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+\lambda y(t)+2 \mu \sum_{k=1}^{\infty} a_{k} \cos k t y\left(t-\tau_{k}\right)=0, \quad \sum_{k=1}^{\infty}\left|a_{k}\right|<\infty, \quad h<\tau_{k} \leqslant 0 \tag{6.1}
\end{equation*}
$$

The difference equation for $f(p)$ (1.3) has the form

$$
\begin{equation*}
\left(p^{2}+\lambda\right) f(p)+\mu \sum_{k=1}^{\infty} a_{k}\left(e^{-\tau} k(p+k i) f(p+k i)+e^{-\tau} k(p-k i) f(p-k i)=\psi(p)\right. \tag{6.2}
\end{equation*}
$$

Suppose that $|\lambda| \ll 1,|\mu| \ll 1$. When $\mu=0$, the poles of $f(p)$ are at $\pm V_{-} \lambda$. Hence, one can look for the zeros of the determinant $\Delta(p)(1.8)$ in the region Σ

$$
\begin{equation*}
|\lambda|<\varepsilon, \quad|\mu|<\varepsilon, \quad|p|<\varepsilon \tag{6.3}
\end{equation*}
$$

Let us transfer the diagonal element in each row of the determinant $\Delta(p)$ behind the symbol of the determinant, except for the one in the central row. For small $\varepsilon>0$, the diagonal elements $-k^{-2}\left[(p+k i)^{2}+\lambda\right]$ ($k \neq 0$) have no zeros in the region (6.3). Therefore, the remaining determinant Det $D_{1}(p)$ of the matrix $D_{1}(p)$ converges in the region (6.3). Hence we have

$$
\begin{align*}
& c_{k}(p)=\mu\left(p^{2}+\lambda\right)^{-1} a_{|k|} \exp \left\{-\tau_{k}(p+k i)\right\} \tag{6.5}
\end{align*}
$$

When $\varepsilon>0$ is small, the zeros of the determinants $\Delta(p)(1.8)$ and Det $D_{1}(p)$ coincide in (6.3). Let us consider the auxiliary infinite matrix $R(p)$ with the determinant in (6.3) not equal to zero

$$
R(p)=\| \begin{array}{ccccc}
\cdot & \cdot & \cdots & \cdot & \cdots \tag{6.6}\\
\cdot & 1 & c_{-1}(p+i) & c_{-2}(p+i) & \cdot \\
\cdot & 0 & 1 & 0 & \cdot
\end{array} \operatorname{Det}_{p \in \Sigma} R(p) \neq 0
$$

The matrix $R(p)$ coincides with the matrix $D_{1}(p)$ (6.4) except for the center row, where all the elements are replaced by zeros while the diagonal element is replaced by one.

Therefore, in the matrix $D_{1}(p) R^{-1}(p)$ there will be (except for the center row) ones along the diagonal and zeros off the diagonal. Det $\left(D_{1}(p) R^{-1}(p)\right)$ reduces to a scalar function of p

$$
\begin{equation*}
\operatorname{Det}\left(D_{1}(p) R^{-1}(p)\right)=\operatorname{Det} D_{1}(p) \operatorname{Det} R^{-1}(p), \quad \operatorname{Det} R^{-1}(p) \neq 0 p \in \Sigma \tag{6.7}
\end{equation*}
$$

Let us find the matrix $(E+C(p))^{-1}$, where

$$
\begin{align*}
& (E+C(p))^{-1}=E-C(p)+C^{2}(p)-C^{3}(p)+\ldots \tag{6.9}
\end{align*}
$$

If we eliminate from the matrix $(E+C(p))^{-1}$ the elements $c_{k}(p)$, which can have poles in the region $\Sigma(6.3)$, then we obtain $R^{-1}(p)$, and the equation $\Delta(p)=0$ takes on the form

$$
\begin{gather*}
p^{2}+\lambda-\mu^{2} \sum_{k=-\infty}^{\infty} \frac{a_{k} a_{-k} \exp \left[-\tau_{k}(p+k i)-\tau_{-k} p\right]}{(p+k i)^{2}+\lambda}+ \\
+\mu^{3} \sum_{\substack{k \neq 0 \\
k, \alpha \neq-\infty}}^{\infty} \frac{a_{k} a_{\alpha-k} a^{2}-\alpha \exp \left\{-\tau_{k}(p+k i)-\tau_{\alpha-k}(p+\alpha i)-\tau_{-\alpha} p\right\}}{\left[(p+(\alpha-k) i)^{2}+\lambda\right]\left[(p+\alpha i)^{2}+\lambda\right]}-\ldots=0 \tag{6.10}
\end{gather*}
$$

It is assumed here that $\tau_{k}=\tau_{-k}, a_{k}=a_{-k}$. In other cases. $\lambda=0.25 k^{2}$ ($k=1,2, \ldots$), and one has to proceed in a similar manner but leave two rows unchanged, the center one and the k th one. Making use of Lemma 5.1, we obtain the condition for stability of the solutions of Equation (6.1) when $|\lambda|$ and $|\mu|$ are small:

$$
\begin{gather*}
\lambda+2 \mu^{2} \sum_{k=1}^{\infty} \frac{a_{k}^{2} \cos k \tau_{k}}{k^{2}-\lambda}+O\left(\mu^{3}\right)>0 \tag{6.11}\\
4 \mu^{2} \sum_{k=1}^{\infty} a_{k^{2}}^{2}\left(\frac{\tau_{k} \cos k \tau_{k}}{\lambda-k^{2}}+\frac{k \sin k \tau_{k}}{\left(\lambda-k^{2}\right)^{2}}\right)+O\left(\mu^{3}+\mu^{2}|\lambda|\right)>0 \tag{6.12}
\end{gather*}
$$

The second of these conditions is not independent on the first one.

BIBLIOGRAPHY

1. Hill, G. W., on the part of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math., 8, pp. 1-36,1886.
2. Lavrent'ev, M. A. and Shabat, B. V., Metody teorii funktsii kompleksnogo peremennogo (Methods of the Theory of Functions of a Complex Variable). Fizmatgiz, 1958.
3. Valeev, K.G., Lineinye differentsial'nye uravneniia s sinusoidal'nymi koeffitsientami i statsionarnymi zapazdyvaniami argumenta (Linear Differential Equations with Sinusoidal Coefficients and Stationary Lags of the Argument). Kiev. Institute of Mathematics, Akad. Nauk USSR, 1961.
4. Valeev, K. G., K metodu Khilla v teorii lineinykh differentsial' nykh uravnenil s periodicheskimi koeffitsientami (On Hill's method in the theory of linear differential equations with periodic coefficients). PMM Vol. 24, No. 6, 1960.
5. Erugin, N.P., Neiavnye funktsii (Implicit Functions). Izd-vo LGU (Leningrad State University), 1956.
6. Valeev, K. G., K metodu Khilla v teorii lineinykh differentsial'nykh uravnenii s periodicheskimi koeffitsientami (On Hill's method in the theory of linear differential equations with periodic coefficients). PMM Vol. 25, No. 2, 1961.
